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1. Introduction 

All known completely integrable systems in both finite- and infinite-dimensi- 
onal mechanics are actually algebraically integrable. In particular the invariant 
tori are “real parts” of Abelian varieties (see, e.g., ref. [ 93 ) which happen to 
be the Jacobians of the so-called spectral curves. This phenomenon is basically 
due to the existence of a Lax description which links mechanics with the 
algebraic geometry of curves and their Jacobians. For infinite-dimensional 
systems, the pioneering work by McKean and Trubowitz, dealing with the 
spectrum of the Hill operator for KdV, yields an infinite-genus hyperelliptic 
spectral curve [8]. The finite-genus case has more a seed description, spelled 
out by several authors (see, e.g., ref. [ 61). 

Parallel to this, there is the set up started by Sato linking algebraic integrabil- 
ity to the geometry of an infinite Grassmannian manifold. In the following we 
will need the Hilbert-Schmidt model Gr(‘H) of this Grassmannian as worked 
out in ref. [lo] and we refer to ref. [ 121 for the study of the KP hierarchy in 
this set up. The link between these two approaches is given by the Krichever 
map, which associates to a spectral curve and a point on its Jacobian (plus 
extra data) a point in Gr(X). 
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Unfortunately, in this algebraic setting the Hamiltonian structure is some- 
what hidden. Basically one deals with a single complex torus which, although 
“generic”, is kept fixed all the time. In this way one has. a “universal” descrip- 
tion of the angle variables, while actions are dealt with in concrete examples. 
The main purpose of this paper is to dig out the Hamiltonian structure in 
the Grassmannian approach with the hope of making it more appealing to 
physicists. 

Recall that a Liouville integrable Hamiltonian system with Hamiltonian h 
is a differentiable map f : V + B of a Zm-dimensional symplectic mani- 
fold (V, w) onto an open set B c UP, such that the components of f are 
independent (i.e., df, A . . . ~df~ f 0), in involution (i.e., {f;:,A} = 0) and 
h = r o f for some smooth function r : B ---) [w. If f is proper, the connected 
components of f-l (b) are m-dimensional tori. If f is regular enough, there 
are action-angle coordinates (11, *a*, 4n, 41, *a-, & ), the di being determined 
mod 2n, such that $ = &(Ii,..., Im ) and o = C dIi A d4i. Such a system 
is called algebraically integrable whenever there is a smooth algebraic variety 
P, endowed with a closed non-degenerate holomorphic (2,0)-form i;, and a 
function & : P + C, together with a proper surjective map f : P + B, with 
B open in P, such that V is a component of the set of real points of P, 
o = &IV, and h is a smooth function of /]I’. It follows that the fibres off’ 
are (possibly degenerate limits of) Abelian varieties. 

Whenever an Abelian variety appearing in connection with algebraically 
integrable systems is actually the Jacobian of a curve C, one can map it into 
Gr(7-1) via the Krichever map (for more details see, e.g., refs. [ 12,101) and 
the Jacobian itself appears as an orbit of the subgroup r+ c Gl,, (3-1). 

As is well known, Gr(li) = U,,(H)/U(X+) xU(‘H-) is a Kahler manifold, 
carrying strictly Hamiltonian action of U,,(X). This space is, however, too 
small to carry a Hamiltonian action of Gl,,(‘H) and in particular of the 
subgroup r+ along whose orbits the KP flow is linearized. To construct an 
explicit bridge between symplectic mechanics and the Grassmannian approach, 
we enlarge Gr(H) to the manifold M = Gl,(ti)/Gl(X+) xGl(H-), on which 
the central extension of Gl,, (‘If) reduces to a symplectic form. This space is 
quite natural as the example of the harmonic oscillator shows (see appendix B) . 
In this environment we can work out symplectic mechanics in a quite standard 
way and, as a byproduct, we can explain why one can actually project the 
flows on Gr(7-t) without losing information. As we will see, this is the same 
as projecting from the phase space to the configuration space, a place where 
Hamiltonian mechanics hardly lives. This projection is, however, costless from 
the algebraic point of view, since there is an isomorphism between the relevant 
tori in M and in Gr(l-l). 

The manifold M is a “universal phase space” containing all (complexified) 
local phase spaces of algebraically integrable systems, in the sense that these 
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appear as submanifolds of M. Here algebra plays a role; one easily gets 
recursion operators by simple algebraic operations which build up Abelian 
algebras of Hamiltonian vector fields on M with no further restrictions. 

The last question we address is about recovering real phase spaces and 
dynamics. We give a real structure on M, whose real points precisely belong 
to Gr(‘H). On this set the dynamics is linearized along the flow of LU( 1) + , 
a real version of r+ . We also give a general expression for the recurrence 
operator relative to this Abelian algebra. 

Although linking to the enormous literature on integrable systems is beyond 
the size of this paper, there are several interesting questions one can ask and 
possibly answer in this set up. We will comment on these in the final section. 

2. Constructing the “universal” phase space 

To fix notations, we recall some basic definitions and refer to ref. [ lo] 
for details. Let ‘H = L2 (S’, C) be the space of all square-integrable complex 
valued functions on the circle S’ = {z E C : ]z] = 1). In ‘H there is an 
orthonormal basis given by the functions {zk, k E k} and a related orthogonal 
decomposition ‘H = ‘H+ @H- , with ‘FI+ and ‘H- the closed subspaces spanned 
by the elements {zk} with k 2 0 and k < 0, respectively. 

In the following we will be mainly interested in the subgroup Gl,, (X) of 
the group Gl (‘H) c B (X ) of bounded invertible operators defined as follows. 
If we write any g E Gl(li) in the block form 

(1) 

with respect to the decomposition 3-1 = R+ @ 3-1- , the group Gl,(‘H) is 
the subgroup of Gl(‘H) made of operators g whose off-diagonal blocks b and 
c are Hilbert-Schmidt. As g is invertible, the blocks a and d are automat- 
ically Fredholm. The Lie algebra of Gl, (31), denoted gl,, (a), consists of 
all bounded operators A of the form ( 1) which are not necessarily invertible 
and with off-diagonal blocks b and c Hilbert-Schmidt. The algebra glres(31) 
is a Banach and a Banach-Lie algebra with respect to the norm ]I . ]]J (see 
ref. [ lo], p. 80). This fact will be helpful in constructing recursion operators 
with vanishing Nijenhuis torsion as we shall see below. The restricted unitary 
group is U,, (‘H) = U(X) n Gl,, (‘H), whose Lie algebra ures (‘H) is made of 
anti-Hermitian elements of glres (‘H ). 

The next object we need is the Grassmannian Gr(7f) of ‘H. This is the 
collection of all closed subspaces W of ‘FI = ‘FI+ CB’FI- which are “comparable” 
with ‘H+ in the sense that the orthogonal projection pr, : W + 7-1+ is a 
Fredholm operator. To give Gr (7-f) the structure of a holomorphic Hilbert 
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manifold, one also requires that the orthogonal projection pr- : W + ?-l- is a 
Hilbert-Schmidt operator. As a result, the local model for Gr(%) is the space 
52 (Z+ ,7L ) of Hilbert-Schmidt operators from ‘FI + to 1-I-. We are interested 
in the component of Gr(E) of virtual dimension zero, i.e., the set of those W 
for which pr, has index equal to zero. As everything can be easly generalized 
to any virtual dimension, we will not mention the component anymore. The 
group Gl,, (7-L) is relevant here because it acts transitively and holomorphically 
on Gr(7-L). Hence Gr(%) is the homogeneous space Gr(7-L) = Gl,,,(%)/G+, 
where G+ is the group of “upper echelon” operators, namely of operators of 
the form ( 1) with c = 0. The manifold Gr (7-L) is as well a homogeneous space 
of U,,, (‘H). Indeed, U,, (‘H) acts transitively on Gr(?-I), the stabilizer of 1-I+ 
is U(3-I+) x U(7-L) and therefore Gr(X) = U,,,(7-t)/U(‘FI+) x U(7-L).. 

The previous definition of Gl,,, (‘H) has a rationale. Because of the Hilbert- 
Schmidt condition one can build a central extension of gl,, (ti ), given by the 
cocycle 

o,(At,A2) = tr(ctb2 - b,cZ), Ai = 

and extend it to a closed invariant two-form on G&,,(E) by setting 

qW1,~2) = m4g-‘&gd~2g) . 

(2) 

(3) 

This is clearly degenerate and therefore gives a pre-symplectic structure on 
Glre,(‘H). To get a symplectic manifold we construct the Marsden-Weinstein 
reduced manifold by noticing that oe is degenerate on the subalgebra B (7-t+ ) x 
B (3-1- ) of gl,,, (‘H ) . Accordingly our natural space will be Gl,,, (3-1) /Gl (7-L + ) x 
Gl(7-L). This is nothing but the complexification of the standard procedure! 
of reducing U,,,(E) by U(X+) x U(X) which identifies the restriction of 
o to U,,,(N) with the Kahler form of the homogeneous manifold Gr(‘H) = 
U,,(3-t)/U(‘H+) x U(7-L) as in ref. [lo]. 

We can do a bit more work and construct an entire family of symplectic 
manifolds. For c E @, consider the family of sets 

M, =: {(W,$) E Gr(R) xgl,,(‘H) ) 4(B) C W, +Iw = c.idw} . (4) 

Clearly enough A.$ is a subspace of Gr (3-1) x gl,,, (7-L) with the induced topology. 
We have projections n( : MC --) Gr(H) given by nc (W, 4) = W, with tibre 
a;‘(W) = 82(3-I/W, W). One can easily show (see appendix A) that each it4c 
is actually a fibred manifold over Gr (X), carrying a Gl,, (‘FI ) action, which 
is transitive for c + 0. For an alternative description of A4c when c + 0, 
consider the set & of couples of subspaces ( W, W’ ) of 7-L, with W E Gr (1-I) 
and W@W’=R.Themapp:M~ -a~ given by p(W,$) = (W,kerd) is 
obviously a bijection. This description makes it clear that there is a canonical 
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section of A!( + Gr(7-t) given by W H (IV, WL ), whose image is isomorphic 
to Gr(‘H) thought of as the homogeneous space U,,,(‘FI)/U(I-I+) x U(K). 
From proposition 10 we learn that 

MC = GL(‘FI)/GlW+) x G1U-L1, C f 0, 
MO = T”Gr(7-L) , (5) 

where T’*Gr(‘H) is the holomorphic cotangent bundle. Thus the universal 
central extension induces a symplectic form, still denoted by w, on MC (for 
[ f 0). As shown in appendix A, o is actually independent of C and extends 
the standard cotangent symplectic structure on Me. Here we point out few 
properties which will be relevant in the following: 

(i) The action of Gl,,, (7I) on Gr(7-I) is covered by an action of Gl,, (7-L) 
on it+ which is symplectic; i.e., for any fundamental vector field X, on MC 
corresponding to any A E gl,,, (‘H) we have CX,W = 0. 

(ii) For any A E gl,,, (7-L) there exists a Hamiltonian function, which is 
explicitly given by ([ f 0) 

h,4(W, W’) = trA(J, - J) ) (6) 

with 

Jg = gJg-’ if (W, W’) = g(N+,Z-); 

it is such that (dhA,XB) = o(XA,XB). 
The Hamiltonian in (6) is obviously a complexification of that given in ref. 
[ lo], whose proof carries over with minor modifications. We notice that 
trA(J, - J) = trA((gJ - Jg)g-‘) exists because [g, J] is a trace class 
operator and the set of all such operators is a two-sided ideal in B (7-t). 
Moreover, hA is Gl(R+ ) x Gl(7L ) invariant, so it is actually a function 
on MC which is independent of C. Accordingly, the action of G&(1-I) on 
I& , c f 0 , is strictly Hamiltonian. On the other hand, the lift to T’*Gr(E) 
of the action of Gl,,(‘H) on Gr(‘H) is strictly Hamiltonian as well, because 
in such cases there is an equivariant momentum map [ 11. Summarizing, we 
have the following: 

Proposition 1. For any [ E @ the action of Gl,,,(‘H) on MC is strictly Hamilto- 
nian. 0 

Since for c #= 0 all MC are isomorphic, we will drop the suffrx and denote 
by M any of these manifolds, while we will keep the notation MO for the 
cotangent bundle. 
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3. Integrable phase spaces 

Our next task is to look for “maximal” Abelian subalgebras A c gl,, (‘H) of 
the form A = d+ @I A- @Cl which are such that: 

(i) the orbits of the groups expd& are isotropic submanifolds of M,; 
(ii) the generators of d+ and A- are canonically conjugate with respect to 

the symplectic structure w. 
By maximal we mean that, if B E g&,,(X) commutes with all A E A, then 
B E A. So there is no strictly larger Abelian subalgebra of gl,,,(‘H) contain- 
ing A. 

The orbits of expd through a point (IV, 4) E M can be identified with 
integrable phase spaces, A+ generating the flows along angles and A- along 
actions. Notice that central elements of the form (exp 2) 1,1 E Q=, act trivially on 
M. Of course we are interested in studying such A up to conjugation because 
the orbit of A through g (IV, 4) is the same as the orbit of gdg-’ through 
(IV, 4). Classifying the conjugacy classes of maximal Abelian subalgebras of 
g&,,(E) is itself a problem which we do not attempt to tackle here. Instead 
we will concentrate on Abelian @*-algebras which are generated by a normal 
operator A E glre,(‘H). In particular we use the fact that gl,,(X), as B(7-i), 
is a Banach algebra (with the operator product) and a Banach-Lie algebra 
(with respect to the commutator of the operator product itself). Thanks to the 
spectral theorem, all these Abelian algebras are unitarily equivalent to algebras 
of multiplication operators (although some caution concerning norms is in 
order here). The main example is obviously the algebra y $ Cl = y+ CB y- @Cl, 
which is already represented as an algebra of multiplication operators on 
‘H = L2(S’,@). Here JJ+ is generated by the multiplication operators zn for, 
n > 0 and n < 0, respectively. An easy computation shows that y @ Cl is a 
maximal Abelian subalgebra of glres (‘H) indeed. Since z is unitary (recall that 
IzI = l), y@Cl is th e maximal Abelian @*-algebra generated by z itself. The 
generic element in y is therefore a normal operator. Notice that this has no 
finite-dimensional analogue. 

To make contact with a more standard mechanical description, notice that 
any A E g&,,(R) defines an endomorphism A. : glres(‘H) + glre,(‘H:) given by 
left multiplication and a family of Lie brackets given by 

[X,YlA =: [X,Yl + fXAU,Y), (7) 

with XA(X,Y) =: [AX,Y] + [X,AY] - A[X,Y] = XAY - YAX and t a 
complex number 0 5 ItI < ]]A]]. 

Proposition 2. The cocycle XA defines a trivial deformation of gl,,(‘FI) and the 
endomorphism A- : gl,, (3-t ) + gl,,(‘H) given by left multiplication by A has 
vanishing (Nijenhuis) torsion. 
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ProoJ For 0 5 ItI < llA[l, the operator (1 + tA) is invertible and the map (1 + 
tA). : g&,,(X) --+ gl,,, (7-L) given by left multiplication is a linear isomorphism. 
It is then enough to show that (1 + tA)[X,Y], = [(I + tA)X, (1 + tA)Y]. 
Since XA has the special form given above, this requires that AxA(X, Y) = 
[AX, AY], which is true since AXAY - AYAB = [AX, AY 1. Accordingly we 
get 

&(x,Y) =:A2[X,Y] + [AX,AY]-A[AX,Y]-A[X,AYl =o, (8) 

and A. has vanishing torsion. cl 

Proposition 2 is actually a quite involved way of stating the trivial fact that 
the algebra spanned by A, A2, A3,. . ., is Abelian. 

From now on we shall stick to the case of y and study the orbits of r = exp y 
in M. Notice that we can restrict y @ Cl to y because operators of the form 
Al act trivially on M. First recall proposition 10.4.2 of ref. [lo]: 

Proposition 3. The action of C on Gr(%) is free. cl 

As for the action of r+ on Gr(l-I), let GW c G&,,(X) be the isotropy 
subgroup of W and set KW = T+ II Gw. 

Proposition 4. (i) Kw is a normal subgroup of r,. (ii) Any orbit O$, of the 
group F$ = T+/Kw is a complex group. In particular, if it is compact and 
jinite dimensional, JW is an Abelian variety. 

ProoJ: 
(i) Kw is clearly a group, because it is the intersection of two subgroups 

and it is trivially normal in r+ because the latter is Abelian. 
(ii) It suffices to notice that the action of F$ is free on O,$ and then to 

apply the following lemma. 

Lemma 5. Let N c Gl,,, (7-i) be the normalizer of r,. Then, for any g E N, 
there is an isomorphism ly : F$ + Fg+w. 

Proox An isomorphism $ : I-+ + r+ will induce an isomorphism v/ : F$ + 
Fg+w if the following diagram 
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is commutative. It is easy to check that for g E N the map @(a) = gag-’ 
will do the job. Cl 

In particular, the centralizer C of lY+ in Gl,,(‘FI) is such that u/ = id for 
any g E C, i.e., F$ = Fgw. 

Together with F$ we have another subgroup F; c l7- given by taking the 
adjoint operators, i.e., F; = (F$ )*, and, since c acts freely, the orbit 0~ 
of FW = F$ x Fi through W in Gr(7i) is isomorphic to FW itself 

Although this orbit is a symplectic manifold with the restriction of the 
Klhler form on Gr (3-1 ), it is not the right phase space, as the action of F$ is 
not Hamiltonian. To overcome this drawback, we lift the action to M, where it 
is clearly Hamiltonian. The orbit 8~ of FW in M through the point ( W, W’) 
is now a good phase space. So, to get a direct Hamiltonian description we 
have to enlarge Gr (1-I) to M. This is, however, not necessary if one simply 
wants to see the evolution, because of: 

Proposition 6. The projection R : M -+ Gr(l-l) restricts to an isomorphism 
7r:c?w-‘aw. 

Proof: The action of Fw is free both on 8~ and on 0~. 0 

We can now be more definite as to the meaning of M as a “universal 
phase space”. We will say that an algebraically integrable system is a Jacobian 
system if the relevant Abelian varieties are actually Jacobians of curves. In 
these cases the Krichever map can be given the meaning of a classifying map. 
Constructing the appropriate category is a task which we leave to the reader. 
Notice that Jacobian systems always have a Lax representation, as one can 
immediately imagine by inverting the construction of ref. [ 6 1. 

4. Real phase spaces and the recursion operator 

To accommodate the complexiflcation of the invariant tori of an integrable 
system in a symplectic framework, one is forced to “complexify” Gr (E) to 
M. However, real tori can be recovered in the Grassmannian set up as well. 

Recall that it4 can be considered as the set of couples of subspaces ( W, W’) 
of ‘FI which are “comparable” with (1-I+, X- ). In other words, M is the set of 
bounded involutions JW = gJg-‘, g E G&,,(X). On M we have a natural 
real structure given by 

(W, W’) H (W’l, w9, (9) 
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or, which is the same, JN’ ++ J$. The set of real points we get in this way is 
precisely a copy of Gr(‘H) canonically embedded in M. It follows that for any 
W the orbit 8~ of FW intersects the real slice Gr(‘H) and the intersection is 
an orbit of a subgroup of the loop group LU ( 1)) corresponding to a real form 
of FW (as a consequence, it differs from the orbit 0~ we started with). In 
particular, whenever a$ is an Abelian variety, & n Gr (3-1) is a real phase 
space with the restriction of the symplectic structure of M. The picture we 
get in this way is that, while M is the “universal phase space” for Jacobian 
systems, Gr (%H) is “universal” for their real sections. 

Let us now come back to the Grassmannian Gr(‘H). Its holomorphic tangent 
space TA+Gr(R) is the space 52(‘H+, . ‘H-) and is identified with the real tan- 
gent space ures (X)/u(‘FI+ ) $ u(‘FI- ) via the map X I+ (j -t’ ). The transitive 
action of I-l,,, (3t) on Gr(7-1) makes it possible to identify U,, (%)-invariant 
tensors on Gr(7-I) with U(1-l+ ) x U(‘H-)-invariant elements in the tensor alge- 
bra over ures (X)/u(‘Fl+ ) $ u(‘FI- ) [ 71. As is well known, the Kahler structure 
of Gr(31) is determined at the base point ‘H+ by the unique invariant (up to a 
scalar multiple) inner product (X, Y) H g (X, Y) = 2 tr(X* Y) , together with 
its imaginary part (X, Y) H @ (X, Y) = -itr(X*Y - Y*X) . This two-form 
@ is related to the restriction to tires (7-1) of the universal central extension of 
glres(‘H) by 

@L41,A2) = iw(Ai,Az) = -i tr Ai [AZ, J] = -i tr(c;cz - c;cr ) , 

with ci Hilbert-Schmidt and a; = -ai, bf = -bi (SO that AT = -Ai). The 
value of Q, at the point W = g’H+ on the fundamental vector fields [,i 
defined by 5, q E u,,(y) is given by 

@Pw;t,ti) = @(g-‘tg,g-‘qg) = -itrt[q, Jwl . (10) 

The Hamiltonian function h, : Gr(‘FI) --f R generating the flow on Gr(‘H) 
associated to < E ures (31) is given by the real form ht ( W) = -i tr{ ( JW - J) 
of eq. (6). Clearly U,,(E) acts on Gr(‘H) leaving 0 invariant. 

The complex structure on Gr(3i) will be denoted by I; it is a map from 
vector fields to vector fields with I2 = -1. The dual map with respect to 
the pairing between vector fields and one-forms will be denoted with IT. 
We have the standard relation o (X, Y) = g (IX, Y) , with the property 
gUX,IY) = g(X, Y). 

The group r of the previous section is actually isomorphic to the loop 
group L@*/C of maps S’ + @* (modulo constants). Accordingly, r is the 
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complexification of the loop group LU ( 1 )/U ( 1) of maps S’ + U ( 1) (modulo 
constants). 

As already mentioned, in the theory of integrable systems one is mainly 
interested in the action of the two Abelian subgroups of r given by r+ = 
exp y+. In the natural basis {zk, k E Z} of H, the matrix of the multiplication 
operator by zk, k > 0, has the form 

(nk)ij = di-j,k = (“$+$) , i,jEE. (11) 

The set {&, k > 0) spans the Lie algebra y+. We shall work with the “realiti- 
cation” lu ( 1) + of y+. The corresponding generators 

‘k =: ‘k - (Ak I* = (di-j,k - 6j-i,k)i,jEZ 

= 
#I++ - (#I,++)* k n;- 

-(A,+-)* n,- - (A,-)* 
, k>O, (12) 

mutually commute. 
The induced fundamental vector fields & on Gr(‘H), being associated 

with an Abelian subalgebra of ures (7-1), are Hamiltonian vector fields and the 
corresponding Hamiltonian functions Poisson commute, { hk, h,} = Lik hl = 
a(&, 2,) = 0 . The set of Hamiltonians {hk, k > 0) are our action variables. 

Having a metric on Gr (‘H), we can associate a vector field with any one- 
form. In particular we shall need the vector fields & associated with the forms 
dhk and the one-forms @k associated with the vector fields &. 

Proposition 7. The vector fields & defined by dhk (?j) = g (xk, 4) and the one- 
fOrm @k defined by @k (fj) = g (& e) , for any Vector fields ?j, are given 

by 

x, = I,& , (13) 
@k = I’dhk . (14) 

Proof: By equating dhk (fi ) = a(&, ?j) = g (I/l^k, f) to g(Xk, ?j> for some 
Vector field xk, eq. (13) fOllOWS. Moreover, from (ITdhk)(e) = dhk(li) = 
@(&I$) = g(I/ik,Ii) = g(/ik,$, eq. (14) fOllOWS. 0 

Notice that the vector fields & are not the Hamiltonian vector fields 
associated with the Hamiltonians hk but are related to them via the complex 
structure. 
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Proposition 8. The vector fields Xk and the one-forms @k have the following 
properties: 

L,@/ = 0, k,l > 0, (15) 

[dk,&l = 0, [xk,&] = 0, k,l >O, (16) 

g(Ak>Al) = 4kdki, g(xk,x/) = dkdk,, g&,X,) = 0, k,f > 0, (17) 

m(Ak,b) = 0, m(xk,&) = 0, o(/ik,X,) = 4k&,, k,l >O. (18) 

Proof Equation ( 15 ) follows from the invariance of the complex structure and 
the fact that the Hamiltonians hk mutually commute. Equation (16) follows 
from the invariance of the complex structure, the vanishing of the torsion of 
the complex structure and the vanishing of the commutator of any two &. 
Finally, simple computations give ( 17) and ( 18). cl 

We are now ready to define the recursion operator for the action of LU ( 1 )+ 
on Gr (‘FI) We first recall some basic fact about recursion operators and their 
use in the theory of integrable systems [ 51. 

Let us’consider a dynamical system on a manifold P and denote by d the 
vector field on P which generates the dynamical evolution. Assume that there 
is a ( 1,l) tensor field R on P which is invariant under the dynamics, 

LAR = 0. (19) 

We shall denote with the same symbol the endomorphism of K(P) (vector 
fields on P) and of its dual K*(P) (one-forms on P) associated with any 
( 1,l) tensor field and defined by 

(R(X),8) E (X,R(0)) E R(X,B) , VX E K(P), 8 E X*(P). 

Any d-invariant tensor R will map d-invariant vector fields into d-invariant 
ones. Iterating R, one generates an algebra d+ of vector fields all commuting 
with d, 

d+ = {d,R(d),R’(d) ,..., Rk(d) ,... } . (20) 

The commutation relations of this algebra are expressed in terms of R and 
of its Nijenhuis tensor Nx defined as in (8). Then condition NR = 0 together 
with (19) implies that the algebra (20) is Abelian. In addition, if R has at least 
two eigenvalues, the dynamics d separates in dynamics of lower dimension. 
This is easily seen in the case of a diagonalizable R, although this hypothesis 
can be relaxed. Let {e,} be its eigenvectors with corresponding eigenvalues 
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{h) , ReptI = h6,, . Then the vanishing of the tensor NR is equivalent to 
the conditions 

(Pu,n - /&I )JL,,Pu,I = 0 > (21) 

(R-cL,~~)o W--P~,)([G~~,~,,~) = 0. (22) 

Condition (22) tells us that the frame {e,,,} is holonomic. Indeed, if {P’,} are 
dual covectors, (P,e,,) = S,,,,,, then RP = ~,,,P,,. By contracting (22) with 
8’ one gets 

(PI - h ) (14 - pIi ) (e’, LetI,, 6, I) = 0 , (23) 
and therefore the frame {e,,,} is holonomic. As a consequence of the condition 
NR = 0, the diagonal form of R is 

R = c p,,,e,,, @a P . (24) 

It is now easy to see that the invariance condition (19) for a diagonal R as 
in (24) implies both the separability of A in lower-dimensional dynamics and 
the fact that the eigenvalues ,,J are constants of the motion for A. Indeed, by 
acting with A on both sides of Re,,, = p,,,e,,, and by contracting with 0,’ and 
using (23), one gets 

LA/b, = 0 , (25) 

(Pm-PL,I) LeJ~‘W = 0 3 c-l f n 3 (26) 

which state that the eigenvalues are constant and that A is separable, respec- 
tively. 

When additional conditions are required on the spectrum of R, one can’ 
sharpen the previous results on separability. For instance, if each eigenvalue p 
is doubly degenerate without stationary points, namely dp # 0, the dynamics 
separates in a sum of two-dimensional dynamics and there is a constant of the 
motion for each of them. Therefore the system is completely integrable. The 
dynamics A is not supposed to be Hamiltonian. However, it turns out that by 
using the hypothesis that the eigenspaces of R are bidimensional and the fact 
that dp # 0, one can construct a Hamiltonian structure with respect to which 
A is Hamiltonian. It separates in one-degree of freedom dynamics which are 
Hamiltonian and completely integrable. 

We propose the following ( 1,l) tensor field for the action of LU( 1) + on 
Gr(X): 

hk R = x-{X,@dhk +&cMk} 
k>O 4k 

= xlk{IL&C3dhk +&@“dhk}. 
k>O 4k 

(27) 
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The tensor R can also be written as 

h R( * ) = c -txk Bgwk, * ) + Ak @‘g(& * ,} 
k>04k 

Iik@'g@k, ' ) +/ik'%'g(ik, . ,} . 
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(28) 

Proposition 9. The tensor R has the following properties. 
(i) It exists. 
(ii) It is degenerate.*Indeed, it vanishes on the orthogonal complement of (the 

closure of) span{$k /ik $, Xl}. On the other hand, 

R(&) = hk& , R(Xk)=hkXk, k>O, (29) 

so that the remaining “eigenspaces” of R are two-dimensional at each point. 
(iii) It is invariant along any vector field &, 

LAkR = 0, k>O. (30) 

(iv) It has vanishing torsion, 

NR = 0. (31) 

Proof: 
(i) For any point in Gr(‘FI) eq. (17) implies that the two families {Xk/&?} 

and {&/a} are orthonormal families of vectors in a Hilbert space (of 
Hilbert-Schmidt operators). Therefore the existence of R is equivalent to the 
boundedness of the family {hk} [ 111. This can be easily checked at any point 
in Gr(‘?f), and it implies the pointwise existence of R. 

(ii) Obvious. 
(iii) Just compute using properties of the f& , Xk and f$k . 
(iv) As we have seen before, the vanishing of NR is equivalent to conditions 

(21) and (22). Now condition (2 1) is easily verified. When the eigenvalue 
& = 0, it is trivial. When e = &, it follows from the fact that the Hamil- 
tonians hk mutually commute; when e = Xk, it follows from (17); when e 
iS in the orthogonal complement of span{@, f& $, Xl}, it follows from the 
orthogonality condition. Let us now analyze (22). When the two e’s are either 
both a /i or both an X or one is a j and the other an X, (22) follows 
from the vanishing of the corresponding commutators. If em is in the the 
orthogonal complement of span{ek & $, Xl} and e,, is either /ik or Xk, then 
the invariance of the metric g implies that the commutators [em, &] and 
[e,,, Xk] are both in the orthogonal Complement Of span{$k & $I Xl}, so 
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that they are eigenvectors of R corresponding to the eigenvalue zero; (22) 
then follows. Finally, let us take e ,,1 and e,, both in the kernel of R. Then 
R ( [e,, e, ] ) = - (L, R) (e, ) = 0, since from the explicit form (27) or (28) 
of R it follows that the kernel of L,,,R is the same as that of R. This completes 
the proof of (31). 

5. Concluding remarks 

Although most of the results of this paper are already available in the 
literature, we felt that an explicit link with symplectic dynamics was missing. 
Giving it provides new tools to tackle some interesting questions in the realm 
of integrable systems which we want to discuss here. 

First of all there is the problem of studying relations between integrable 
systems and Lax systems. The construction of Griffiths [6] explicitly realizes 
the Lax flow as a flow N, on the Jacobian of the spectral curve. By mapping 
to Gr(7-1) via the Krichever map, one finds a Hamiltonian system which 
is completely integrable whenever the flow iVl is linear. Conversely, given a 
Jacobian system, we can reconstruct a Lax representation for it by choosing a 
representation of the Krichever curve C as a branched covering of Pi. Given an 
ample initial datum LO, the flow of r+ on Jac(C) gives a family LI = LO@& 
of ample line bundles on C. Inverting the eigenvector map of ref. [ 61, one 
gets a Lax matrix L = L( t ) and a “Hamiltonian” B such that the flow Lt has 
equation i = [B, L]. Although filling in all the details of this picture requires 
some work, one immediately realizes that the Lax form of a given Jacobian 
system is not unique since the representation C + Pi is not. In other words, 
the explicit dependence of L on the spectral parameter as well the rank of 
L are not unique. One may profit from this ambiguity in circumventing the 
Griffiths obstruction by suitably changing the representation of the spectral 
curve. This might also help in understanding the “right” way of inserting the 
spectral parameter in the Lax matrix. Incidentally, we notice that the evolution 
equations on M naturally have a Lax form. Indeed, if g(t) = exp tB and 
Jh = hJh-‘, then the flow induced by B reads Jgtl).h = g(t)Jt)g(t)-* and 
satisfies the equation j = [B, Jj, ]. 

Secondly, the present set up makes less mysterious the role of recursion 
operators in integrable systems. Indeed, all Jacobian systems have a natural 
recursion operator R, as shown in sections 3 and 4. Although constructing R 
in explicit examples may be as hard as finding action-angle coordinates, the 
way to do it is in principle clear and works more generally for the set up 
of ref. [ 51. Given a dynamical vector field d, one symply needs to realize 
the Abelian algebra generated from d by successive applications of R, as an 
Abelian @*-algebra in B(E) and then apply the spectral theorem. Notice that 



G. Landi and C. Reina / Symplectic dynamics on the universal Grassmannian 249 

we do not need any compatibility condition between R and the symplectic 
structure on Gr (‘FI ), although these might be automatically satisfied when 
restricting to an orbit 0~. 

As a final comment, we notice that the manifold M given in (4) can be 
considered as a parameter space for solutions of the modified Yang-Baxter 
equation. Indeed any point in M corresponds to an involution of the form 
R, = gJg-‘, for g E Gl,,, (‘R), which satisfies both n/R, = 0 and Ri = 1. 
These two conditions are actually equivalent to the modified Yang-Baxter 
equation [ 131. Although these R’s are of little use as recursion operators, they 
may turn out to be relevant for the understanding of the geometrical meaning 
of the Yang-Baxter r-matrices. Indeed, any g E F$ implements a translation 
t, along any orbit 8~. When these are Jacobians of curves, the restriction of 
the line bundle Det’ coincides with the @-bundle on the Jacobian itself and the 
action of g on Det’ gives a translation t;t9. From the theorem of the square 
(see, e.g., ref. [ 21) we have an isomorphism v/ : ti, +a2t9 ~8 8 -+ taf, 8 @ t& 8. 
Explicit representations of the isomorphism w can be directly related to 
quantum Yang-Baxter matrices [ 3 1. 

Appendix A. A family of symplectic manifolds 

The family M = lJc MC, with I& given by (4), is actually a fibred manifold 
over @ x Gr(7-L) which can be covered by open sets of the form Vs = C x Us x 
&(‘FIs,,‘Hs) indexed by Dirac seas S E Z (with S’ = Z-S). Here Us c Gr(7-L) 
is the open set of W’s with ws invertible, if we think of W E Gr(3-I) as the 
image of a map 

ws 
( > Ws 

:‘Hs+?i, 

and Sl (‘,Q,, ‘Hs) is the space of Hilbert-Schmidt operators b : ~-L/~-IS = 
tip + 7-l~. Indeed we have homeomorphisms 

7r-‘(C x Us) + v, ) (C, w,4) H (6-Y Tsbs) 3 (A.11 

where 
Ts = w~Iw,‘, 

In fact, any W E Us can be written as W = g7f.s with 

and hence 
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has the form (9 2 ) relative to the decomposition 3-1 = ‘H,s $ F&j. Notice that 

is a map with image W @ 7is. 
Whenever W E US, II US,, there is a linear isomorphism 

such that the diagram 

commutes, where B = ($) is the matrix of the identity transformation 
‘Hs,, $ ES; --) l-is, CD ‘Hs; (i.e., a : tic + 1-11, etc. ) and 

fT= 10 
( ) Tsil , i=O,l. 

The commutativity of the diagram (A.2) implies that 

In turn one gets 

Ts, = (c + dTsoHa + bTsJ’ , (; !) = (” ‘iTso AT&b) ’ 

the first relation being the usual coordinate transformation on Gr(R), which 
shows that Ts, is a holomorphic function of Ts,, in the open set where a + bTso 
is invertible. With these data we can identify the corresponding bs,. We have 
that 

and therefore, by setting 
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we obtain 

(y “o;,) = (4) (y “2) (~-p~--$yl)) 

from which bs, = -@S -’ + abs,,d -I. 
Summarizing, the coordinate transformations on M are given by 

v,, + vs, 3 (C, Ts,, bs,) H (L Ts,, bs,) 
Ts, = (c + dTs,J (a + bTs,,)-’ , 
bs, = t-0 + (a + bTso)b,soW - Ts,b)-’ . (A.31 

Notice that for C f 0 the clutching functions for the bs, are not homogeneous, 
and therefore MC is not a vector bundle. For [ = 0 instead, they become 
homogeneous and Mc is isomorphic to the ( 1, O&cotangent bundle T’*Gr(lH) 
of Gr(‘H). This easily follows from the exact sequence 

O+S-,Gr(3-I)xH+&-,O, 64.4) 

5 = { ( IV, f ) E Gr(‘H) x 3-1 1 S E IV} being the tautological bundle. In analogy 
with the finite-dimensional case we have that T’Gr(‘H) = &(S, &) and 
T’*Gr(X) = S,(Q,S) , where 532 means Hilbert-Schmidt homomorphisms. 
Accordingly, the transition functions read xs, = Bx~D(Y-’ for T’Gr(‘H) and 
bs, = abs,,b-’ for T’*Gr(X). 

We next construct a relative symplectic structure on M. On each open set 
Vs define a one-form 0~ by setting es(X) = trxbs for X = (i $) a tangent 
vector field on Vs. This is global for [ = 0; indeed, 

tr xs, bs, = trGxs,,a-’ (-[b + crbs,,)b-’ 

= trxs,,bs, - CtrxS,,a-‘b , (A.51 

the difference being ~s,,s, = -C trxs,,o -lb. The family of two-forms de1 vs 
merges to a global closed two-form o on M if and only if de.s,,s, = 0. Since 
b is constant, one easily computes 

desos, (X, Y) = tr(x(Da-‘,Y) -y(Dctml,x))b, 

where (DA, B) denotes the Frechet derivative of A along B. Using the fact 
that (Da-*,y) = -a-‘(Da,y)a-’ and (Da,y) = by, 

desos, (X, Y) = trxcr-‘bycr-‘b - trya-‘bxa-‘b = 0 . 

Next we compute olvs = des by noticing that LxB( Y) = tr(DY, X) + tryx’. 
After some algebra we find 01 vs (X, Y) = tr (yx’ - xy’ ), which is obviously 
globally defined, closed and non-degenerate. Summarizing we have 
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Proposition 10. (I) For C: = 0, colic is the standard cotangent symplectic form 
on MO = T”Gr(3-I); (2) f or any [ f 0, w[~~ coincides with the restriction of 
the central extension of Gl,, (1-1) to MC = Gl,, (‘FI ) /Gl (.%+ ) x Gl (7-1- ). 0 

Proposition 11. The family (M, w) is a deformation of the cotangent symplectic 
structure on the centralfibre MO = T’*Gr(‘H). 0 

Appendix B. The example of the harmonic oscillator 

The subset Q=* = @- { 0) of the phase space of the harmonic oscillator (where 
the Hamiltonian H = $ZZ* , z = p + iq, is not critical) can be mapped to 
SlV,a=) by 

1 L : @* --) S1(2,@) ,z ts - 
b&-“P * ( ) 

The Hamiltonian flow on @* is then equivalent to a Lax equation of the 
form t = [L,B] , with B = i (-0, h) [4]. We extend this embedding to 
the complexification @* - (0) of the real phase space by letting p and q be 
complex. Now L : @* --) a=* is an involution, i.e., L* = 1 and the solution of 
i = [L, B] reads 

L(t) = e +fB L(0) emfB . (B.2) 
This is really a flow on the space of involutions on @* similar to, e.g., 

L(O) = ; -9 ( ) 
(initial condition for q = 0, p = po # 0). Such a space is the tinite- 
dimensional analogue of M. The analogue of y+ , y- are the one-dimensional 
subalgebras spanned by 

which, however, do not commute, a marked difference with the infinite- 
dimensional case. The Lax pair Lt = &% (L + <B ) , B gives equivalent Lax 
equations. The associated spectral curve is the locus C = { (A, <) ( det (Lc - 
Al)}, i.e., A* + <* = 2H. This is a copy of P’ with two points removed, as 
the condition that H is non-degenerate easily implies. These two points can 
be actually identified, giving us a node curve of genus 1. Its Jacobian is the 
locus p* + q* = 2H, H f 0. 

We are grateful to G. Marmo for a beautiful seminar and several discussions 
on recursion operators, which gave us many useful suggestions. For useful 
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